Blueprint of visual information processing in the mouse brain

Researchers at NERF characterize the functional diversity and specificity of visual areas in the brain cortex

15 June 2022

A research team led by Vincent Bonin at NERF (empowered by imec, KU Leuven and VIB) has assessed more than 30,000 nerve cells in the mouse brain to learn more about how they are specialized in processing visual information. The results, published in Nature Communications, provide fine-grained insights into how the brain is able to see what our eyes perceive.

When navigating the world around us, it is vital we can correctly process visual information. Yet, researchers still have only a limited view of how the visual processing streams in our brain help us accomplish this amazing feat.

Prof. Vincent Bonin and his team in Leuven study these neural circuits of vision: “Our main goal is to elucidate the biological mechanisms underlying visual processing and visually-guided behavior. Our research is centered on the visual cortex, which is part of the outer layer of the brain, as well as its connections, and how these circuits contribute to sensory perception and behavior.”

The response of 30,000 brain cells

To get a clear picture of what happens in our brain with visual information, scientists primarily need more and better data, says Bonin. “There is a lack of data sets spanning multiple visual areas to uncover information processing streams, and the sparse, singular recording data sets obtained from individual areas often fall short in revealing their functional diversity.”

That is why Xu Han, who recently completed his PhD at the Bonin lab, set out to measure the activity of more than 30,000 neurons from 8 different visual areas in the mouse brain in response to a broad array of visual stimuli. With this massive effort, Han and his colleagues wanted to map the response from tens of thousands of neurons in terms of their ability to encode orientation, spatiotemporal contrast, and visual motion speed.

Highly structured, highly distributed

The researchers found that while all mouse visual cortical areas conveyed diverse types of visual information, they had a distinct bias in terms of the number of neurons that are tuned to particular features.

Han explains: “Higher visual areas in the mouse brain form complementary neural representations when it comes to visual cues at distinct spatial and temporal scale, including motion speed and spatial patterns. The resulting parallel processing streams specialized in analyzing fine spatial patterns, fast motion or slow motion, are critical for visual behavior such as object recognition, foraging and navigation.”

Zooming in on individual cells, some features formed a continuum while other visual features are clearly encoded by distinct tuning types.

Bonin: “Our data underscore the highly structured and highly distributed nature of cortical representations of visual cues, driving specialization of different areas and information streams.”

As such, the study opens a new window on the organizing rules of neural circuits underpinning sensory processing, perception, and behavior. “By combining functional imaging, tracing and manipulation of neural circuits, we provide a cellular-resolution blueprint for the organizing principles underlying visual processing in the brain.”


Publication

Diversity of spatiotemporal coding reveals functional specialization of visual streams in the mouse cortex
Han, Vermaercke & Bonin, Nat Comms 2022

India Jane Wise

India Jane Wise

Science Communications Expert, VIB

Share

Latest stories

Website preview
MRM Health Raises €55 Million Series B to Advance Best-in-Class Microbiome-based Biotherapeutic Product Pipeline
Ghent, Belgium – September 04, 2025 – MRM Health NV, a clinical-stage biopharmaceutical company pioneering microbiome-based therapeutics for inflammatory diseases and immune-oncology, today announced the successful closing of a €55 million (US$64 million) Series B financing round.
press.vib.be
Website preview
Spica Therapeutics Secures €1 Million VLAIO Grant to Advance Groundbreaking Macrophage-Targeted Cancer Therapy
Antwerp, Belgium - 27 August, 2025 - Spica Therapeutics, a pioneering biotech company focused on harnessing macrophage biology to develop transformative therapies across multiple disease areas, announced today that it has been awarded a €1.0 million grant from Flanders Innovation & Entrepreneurship (VLAIO).
press.vib.be
Website preview
Scientists map dendritic cell reactions to vaccines 
Ghent, 26 August 2025 – Belgian scientists have uncovered new details about how the immune system responds to vaccines. Dendritic cells, which are key immune messengers that help kick-start the body’s defenses, show specific responses to lipid nanoparticles. These findings, published in Cell Reports, could lead to safer and more effective vaccines.  
press.vib.be

About VIB Press

VIB is an independent research institute that translates insights in biology into impactful innovations for society. Collaborating with the five Flemish universities, it conducts research in plant biology, cancer, neuroscience, microbiology, inflammatory diseases, artificial intelligence and more. VIB connects science with entrepreneurship and stimulates the growth of the Flemish biotech ecosystem. The institute contributes to solutions for societal challenges such as new methods for diagnostics and treatments, as well as innovations for agriculture. 

Learn more at www.vib.be.

Contact

Suzanne Tassierstraat 1 9052 Zwijnaarde

+32 9 244 66 11

press@vib.be

vib.be