Improving transformation frequency in maize

Opening the door for high-efficiency gene-editing research

Ghent,Belgium 25/06/2024Maize is one of the classical model organisms for genetic research. However, the low transformation frequency remains an important bottleneck for many gene-editing applications. Researchers at the VIB-UGent Center for Plant Systems Biology have made substantial strides in overcoming this bottleneck. By leveraging a combination of ternary vectors and morphogenic regulators, they have significantly boosted transformation efficiency, paving the way for more effective research and innovative applications. Their research is published in The Plant Journal.

Tackling the transformation bottleneck

Maize (Zea mays L.) is a very important crop globally for agricultural and industrial applications, but also a key model organism in genetic research. Traditionally, gene editing in maize relies on Agrobacterium-mediated transformation. However, a low transformation frequency in this species creates a bottleneck in genetic research, including novel genomic techniques (NGTs)

A research team from the VIB-UGent Center for Plant Systems Biology together with a collaborator at the University of Caliornia at Davis in the US, tackled this bottleneck on two fronts. They introduced an additional helper plasmid to Agrobacterium, increasing its ability to transfer DNA to maize cells.. Additionally, they used GRF-GIF chimeras, a type of morphogenic regulator, to increase the regeneration of transformed cells into plants. Combining these technologies, the number of transformed plants they could generate improved up to 20-fold.

Increasing the transformation frequency has been a goal for many research groups worldwide. However, earlier published results are often based on just a one-off experiment. Here, we evaluated our methods over many years, experiments, and operators. ​ This gives us a solid scientific foundation to implement our findings in further research. – Laurens Pauwels, group leader at the VIB-UGent center for Plant Systems Biology.
Part of the research team, from left to right: Laurens Pauwels, ​ Stijn Aesaert, Wout Vandeputte, and ​ Griet Coussens

Implications for the future

The research was done on a maize inbred line called B104. Although this line is often used in research, it has limited economic benefits for agriculture in Belgium. The inbred line is not well-suited to local growing conditions, and farmers typically use hybrids. The researchers now aim to transform maize inbred lines. The final goal is to gain knowledge to create new hybrids that are agronomically viable and economically beneficial for local farmers, but are difficult to transform with older methods.

Our next focus will be on field applications. If we can transform inbred maize lines that are more interesting for farmers, we might be able to create more interesting hybrid plants. This can be the starting point to use NGTs more efficiently in agriculture. – Wout Vandeputte, first author and PhD student at the VIB-UGent Center for Plant systems Biology.

Publication: http://doi.org/10.1111/tpj.16880

Funding: ​ FWO and Methusalem funding


About the VIB-UGent Center for Plant Systems Biology

The VIB-UGent Center for Plant Systems Biology wants to gain insight into how plants grow and respond to the environment. Scientists study how leaves and roots are formed, which micro-organisms live on and around the plant and which substances the plant makes. They map out the genetic diversity of the plant kingdom. This knowledge can lead to sustainable innovations in agriculture and food.

 

 

 

 

Share

Latest stories

Website preview
Spectacular Breakthrough in Sepsis Research: Vitamin B1 Stops Deadly Lactate Production and Opens the Door to a New Treatment
Ghent, July 29, 2025 – Scientists in Ghent have achieved a major breakthrough in sepsis research. In a study on mice, the researchers demonstrate that vitamin B1 (thiamine pyrophosphate, TPP) restores mitochondrial energy metabolism, drastically reduces lactate production, and increases survival rates in sepsis. The study results were published in Cell Reports.
press.vib.be
Website preview
Scientists discover brain switch that controls freeze-or-flight survival instincts
Leuven, Belgium, 23 July 2025 – Researchers have identified a key neural switch that controls whether animals instinctively flee from a threat or freeze in place. By comparing two closely related deer-mouse species, they found that this switch is calibrated by evolution to match the animal's habitat. This neural circuit is hypersensitive in mice living in densely vegetated environments, causing instant escape, but less responsive in their open-field cousins, who are more likely to freeze. In doing so, the research team uncovered an important way in which evolution fine-tunes the brain for survival.
press.vib.be
Website preview
Groundbreaking Study Offers a Novel Approach to Enhance Neuromuscular Function in Patients with Duchenne Muscular Dystrophy
Findings published in The American Journal of Pathology identify GLUD1 enzyme as a potential therapeutic target for muscle restoration through metabolic reprogramming, addressing clinically unmet need for treatment beyond symptom relief
press.vib.be

About VIB

VIB is an independent research institute that translates insights in biology into impactful innovations for society. Collaborating with the five Flemish universities, it conducts research in plant biology, cancer, neuroscience, microbiology, inflammatory diseases, artificial intelligence and more. VIB connects science with entrepreneurship and stimulates the growth of the Flemish biotech ecosystem. The institute contributes to solutions for societal challenges such as new methods for diagnostics and treatments, as well as innovations for agriculture. 

Learn more at www.vib.be.

Contact

Suzanne Tassierstraat 1 9052 Zwijnaarde

+32 9 244 66 11

press@vib.be

vib.be