New insights in plant response to high temperatures and drought

Researchers at VIB-UGent have unraveled how the opening and closing of stomata - tiny pores on leaves – is regulated in response to high temperatures and drought.

Open stomata in Arabidopsis
Open stomata in Arabidopsis

Ghent, 29 November 2024 – We are increasingly confronted with the impacts of climate change, with failed harvests being only one example. Addressing these challenges requires multifaceted approaches, including making plants more resilient. An international research team led by researchers at VIB-UGent has unraveled how the opening and closing of stomata - tiny pores on leaves – is regulated in response to high temperatures and drought. These new insights, published in Nature Plants, pave the way for developing climate change-ready crops.

Global climate change affects more and more people, with extreme weather conditions steadily becoming the norm. Beyond the immediate impacts like floods and severe droughts, it also significantly affects our natural ecosystems and crops, making it challenging in many regions to grow the food we rely on or to identify the right climate-adapted plants.

Prof. Ive De Smet (VIB-UGent Center for Plant Systems Biology): “For years our research has focused on the impact of extreme weather conditions on plants. The molecular insights we gain can lead to solutions to enhance plant resilience. In essence, we learn from the natural mechanisms that plants themselves deploy. For instance, how stomata on leaves play a crucial role in the plant’s interaction with the environment. This makes insights into their activation mechanisms highly valuable.”

Conflicting responses in stomata, the ‘sweat glands’ of plants

Plants respond to changing environmental conditions among others via opening or closing little pores in their epidermis. These so-called stomata regulate gas and water vapor exchange with the environment, function as entry points for pathogens, and are pivotal in shielding plants against abiotic stress. ​ When temperatures are high, the stomata open to cool down, in dry conditions they close to prevent water loss. So, when conditions are dry and hot, this may evoke conflicting – and therefore less efficient - stomatal responses. The VIB-UGent team of Prof. Ive De Smet joined forces with research teams from the universities of Utrecht (NL), Valencia (Spain), and Wageningen (NL) and set out to unravel the underlying cellular mechanisms.

Open stomata in a wheat plant at high temperatures
Open stomata in a wheat plant at high temperatures

A well-regulated signaling axis

Dr. Xiangyu Xu (VIB-UGent), first author of the study: “Opening and closing of stomata are rapid responses that require switch-like signaling mechanisms. We know that phosphorylation-encoded switches within protein networks are reversible and tend to be faster than genetic switches. That’s why we studied the role of kinase-mediated phosphorylation relays in stomata opening and closing.”

Xu and his colleagues succeeded in identifying and characterizing a novel phosphorylation-dependent signaling axis that regulates stomatal aperture under high temperature and/or drought conditions. They demonstrated that TOT3, a high temperature-associated kinase, controls stomatal opening under high-temperature conditions, and that OST1, which regulates stomatal closure during drought stress, directly inactivates TOT3 through phosphorylation. This specific phosphorylation-mediated control of TOT3 activity acts as a switch to mediate stomatal aperture under high temperature and/or drought conditions.

Dr. Lam Dai Vu (VIB-UGent): “As a researcher, it is rewarding to unravel a new signaling axis that coordinates stomatal opening and closing in response to various stress signals. More importantly, in the context of global climate change, understanding these mechanisms holds potential for developing crops that are resilient to climate challenges.”

Publication

High temperature-mediated stomatal opening is regulated by the OST1-regulated TOT3-AHA1 module. Xu et al. Nature Plants 2024

Funding

This work was supported by the Agencia Estatal de Investigación, NWO, UGent, and the China Scholarship Council.


About Ghent University ​

Ghent University is one of the major universities in the Dutch-speaking region of Europe. It distinguishes itself as a socially committed and pluralistic university in a broad international perspective. 86 faculty departments, spread over 11 faculties, offer high-quality courses in every one of their scientific disciplines. With a view to cooperation in research and community service, numerous research groups, centers and institutes have been founded over the years.

www.UGent.be/en

 

 

About VIB

VIB is an independent research institute that translates insights in biology into impactful innovations for society. Collaborating with the five Flemish universities, it conducts research in plant biology, cancer, neuroscience, microbiology, inflammatory diseases, artificial intelligence and more. VIB connects science with entrepreneurship and stimulates the growth of the Flemish biotech ecosystem. The institute contributes to solutions for societal challenges such as new methods for diagnostics and treatments, as well as innovations for agriculture. 

Learn more at www.vib.be.

Contact